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Abstract 1 

Retrospective predictions of multi-year North Atlantic hurricane frequency are explored, 2 

by applying a hybrid statistical-dynamical forecast system to initialized and non-3 

initialized multi-year forecasts of tropical Atlantic and tropical mean sea surface 4 

temperatures (SSTs) from two global climate model forecast systems. By accounting for 5 

impacts of initialization and radiative forcing, retrospective predictions of five-year mean 6 

and nine-year mean tropical Atlantic hurricane frequency show significant correlation 7 

relative to a null hypothesis of zero correlation. The retrospective correlations are 8 

increased in a two-model average forecast and by using a lagged-ensemble approach, 9 

with the two-model ensemble decadal forecasts hurricane frequency over 1961-2011 10 

yielding correlation coefficients that approach 0.9.  11 

These encouraging retrospective multi-year hurricane predictions, however, should be 12 

interpreted with care: although initialized forecasts have higher nominal skill than 13 

uninitialized ones, the relatively short record and large autocorrelation of the time series 14 

limits our confidence in distinguishing between the skill due to external forcing and that 15 

added by initialization. The nominal increase in correlation in the initialized forecasts 16 

relative to the uninitialized experiments is due to improved representation of the multi-17 

year tropical Atlantic SST anomalies. The skill in the initialized forecasts comes in large 18 

part from the persistence of a mid-1990s shift by the initialized forecasts, rather than 19 

from predicting its evolution. Predicting shifts like that observed in 1994-1995 remains a 20 

critical issue for the success of multi-year forecasts of Atlantic hurricane frequency. The 21 

retrospective forecasts highlight the possibility that changes in observing system impact 22 

forecast performance. 23 
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 1 

I. Introduction 2 

Predicting and projecting future North Atlantic hurricane activity is a topic of 3 

scientific interest (e.g., Gray 1984; Knutson and Tuleya 2004; Emanuel 2005; Camargo 4 

et al. 2007a; Vecchi et al. 2008; Smith et al. 2010; Knutson et al. 2010; Vecchi et al. 5 

2011; Villarini et al. 2011.a; Villarini and Vecchi 2012b-d) and high societal significance 6 

(Pielke Jr. et al. 2008; Mendelsohn et al. 2012; Peduzzi et al. 2012). Seasonal basin-wide 7 

frequency of North Atlantic hurricanes has exhibited variability on a variety of 8 

timescales, from interannual to multi-decadal, although it remains unclear whether there 9 

has been any century-scale trend in Atlantic hurricane frequency (e.g., Mann and 10 

Emanuel 2006; Vecchi and Knutson 2008, 2011; Landsea et al. 2011; Villarini et al. 11 

2011b). 12 

The scientific basis for predictions of seasonal hurricane activity at leads of one to 13 

three seasons has been developed (e.g., Gray 1984; Elsner and Jagger 2006; Vitart 2006; 14 

Camargo et al. 2007a,b; Vitart et al. 2007; Klotzbach and Gray 2009; Wang et al. 2009; 15 

Kim and Webster 2010; LaRow et al. 2010; Zhao et al. 2010; Alessandri et al. 2011; 16 

Chen and Lin 2011; Vecchi et al. 2011; Villarini and Vecchi 2012d), leading to the 17 

identification of different potential sources of skill, both local and remote. 18 

Decadal to centennial projections of seasonal hurricane activity in response to 19 

changes in external forcing (greenhouse gases, aerosols, volcanoes, and solar) have been 20 

made (e.g. Oouchi et al. 2006; Knutson et al. 2008; Emanuel et al. 2008; Gualdi et al. 21 

2008; Vecchi et al. 2008; Sugi et al. 2009, 2012; Zhao et al. 2009; Bender et al. 2010; 22 

Knutson et al. 2010; Knutson et al. 2010; Villarini et al. 2011a; Zhao and Held 2011; 23 
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Villarini and Vecchi 2012b,c). The basis for these projections is the possibility that 1 

radiatively-forced climate change could influence the climatic conditions to which 2 

hurricanes are sensitive, such as large-scale circulation, wind shear, ocean temperatures, 3 

potential intensity and humidity (e.g., Emanuel 1987, 2007; Broccoli and Manabe 1990; 4 

Shen et al. 2000; Knutson and Tuleya 2004; Camargo et al. 2007b; Vecchi and Soden 5 

2007a,b). Recent model results span a relatively wide range of possibilities for North 6 

Atlantic hurricane frequency (including increases or decreases) under enhanced CO2-7 

induced warming, while there is a wider tendency for hurricane intensity to increase in 8 

these studies (e.g., Knutson and Tuleya 2004; Knutson et al. 2008, Emanuel et al. 2008, 9 

Gualdi et al. 2008; Knutson et al. 2008; Vecchi et al. 2008; Sugi et al. 2009, 2012; Zhao 10 

et al. 2009, Bender et al. 2010; Knutson et al. 2010, Villarini et al. 2011a; Villarini and 11 

Vecchi 2012b,c). There are indications that changes in atmospheric aerosols could 12 

influence past and projected hurricane activity, with increases (decreases) in Atlantic 13 

aerosol loading driving decreases (increases) in Atlantic hurricane activity (Mann and 14 

Emanuel 2006; Evan et al. 2009, Villarini and Vecchi 2012b,c).  15 

Assessing hurricane predictability at intermediate timescales, between seasonal 16 

predictions and multi-decadal projections, is an emerging field of research. In addition to 17 

potential influences from changes in radiative forcing, internal variations of the climate 18 

system could play a large role in changes of hurricane frequency on timescales of decades 19 

(e.g., Goldenberg et al. 1996; Zhang and Delworth 2006, 2009; Knight et al. 2006; Latif 20 

et al. 2007; Dunstone et al. 2011; Villarini et al. 2011; Villarini and Vecchi 2012b). 21 

There are physical reasons to expect coherent multi-year hurricane variations to be tied to 22 

ocean changes (e.g., Goldenberg et al. 1996, Zhang and Delworth 2005, 2006, 2009; 23 
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Knight et al. 2006, Latif et al. 2007, Dunstone et al. 2011). There is also indication that 1 

some of the relevant ocean changes may be potentially predictable on decadal timescales 2 

(e.g., Griffies and Bryan 1997a,b; Pohlmann et al. 2004; Collins et al. 2006; Pohlmann et 3 

al. 2009; Msadek et al. 2010; Smith et al. 2010; Teng et al. 2011; Chikamoto et al. 2012; 4 

van Oldenborgh et al. 2012; Rosati et al. 2012; Yang et al. 2012; Yeager et al. 2012). As 5 

decadal variability and the associated predictability can result from both internal and 6 

externally forced fluctuations (e.g., Rotstayn and Lohmann 2002; Hawkins and Sutton 7 

2009; Chang et al. 2011a; Villarini et al. 2011; Booth et al. 2012; Villarini and Vecchi 8 

2012b), one has to consider skill arising from both external factors and internal variability 9 

on multi-year timescales. A number of modeling groups are now following the same 10 

framework for the Fifth Coupled Model Intercomparison Project (CMIP5; Taylor et al. 11 

2012) to be assessed as part of the 5th Assessment Report of the Intergovernmental Panel 12 

on Climate Change (IPCC-AR5), by performing decadal predictions initialized with 13 

estimates of the observed state of the climate system (Taylor et al. 2012, Meehl et al. 14 

2012). While for sea surface temperature (SST), most of the skill on multi-year 15 

timescales arises from predicting the warming trend associated with radiative forcing 16 

changes (e.g., van Oldenborgh et al. 2012; Rosati et al. 2012), there is at least one study 17 

suggesting that initialization can increase the skill in multi-year hurricane forecasts 18 

(Smith et al. 2010; henceforth S10). In this paper we explore the ability of a hybrid 19 

statistical-dynamical hurricane forecasting system to retrospectively predict multi-year 20 

hurricane activity in the Atlantic using two different coupled climate models, including 21 

the one used by S10. We explore the skill of North Atlantic hurricane frequency resulting 22 

from changing radiative forcing and from natural variability. We assess the improvement 23 
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in skill due to initialization and discuss the source of this improved skill and its 1 

implications for future multi-year forecasts of North Atlantic hurricane frequency. 2 

II. Data and Methods 3 

A. Statistical hurricane emulator: 4 

We use a hybrid statistical-dynamical North Atlantic hurricane frequency prediction 5 

framework to explore the predictability of multi-year hurricane activity. This framework 6 

has been shown to exhibit retrospective skill in seasonal hurricane forecasts from as early 7 

as boreal winter prior to the hurricane season (Vecchi et al. 2011). It combines a 8 

statistical emulator of a high-resolution dynamical atmospheric model (Zhao et al. 2009, 9 

2010) and initialized forecasts of SST. The statistical emulator is formulated as a Poisson 10 

regression model with two predictors: Tropical Atlantic SST and Tropical-mean SST, 11 

each averaged over the August-October season.  12 

The choice of these two predictors is motivated by dynamical considerations, 13 

observed relationships between hurricane activity and SST, and the sensitivity of 14 

dynamical models to SST perturbations. Observational analyses have highlighted 15 

correlations between SST changes in the tropical Atlantic and hurricane activity indices 16 

(e.g., Elsner and Jagger 2006; Emanuel 2005). However, observational correlations as 17 

high or higher have been found between hurricane activity and the weighted difference 18 

between Atlantic and tropical-mean SSTs (the SST changes in the Atlantic relative to the 19 

tropics, or “Relative SST”) by other studies (e.g., Swanson 2007, 2008; Vecchi et al. 20 

2008; Villarini et al. 2010, 2011.a, 2012; Villarini and Vecchi 2012). The physical basis 21 

for exploring relative SST as a predictor of hurricane activity is based on the tendency of 22 

free tropospheric temperature changes to follow those of tropical-mean SST (Sobel et al. 23 
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2002) or SSTs in the Indo-Pacific region where the bulk of tropical convection resides 1 

(Tang and Neelin 2004) as described by the Weak Temperature Gradient approximation 2 

(Sobel and Bretherton 2000). An Atlantic SST warming that is larger than that of the 3 

tropical average, with a tropospheric warming in the Atlantic that follows tropical-mean 4 

SST, would lead to a large-scale destabilization of the atmosphere in the Atlantic, to 5 

changes in the large-scale vorticity, shear and atmospheric humidity, as well as to 6 

increases in TC potential intensity (e.g., Latif et al. 2007; Vecchi and Soden 2007; Gualdi 7 

et al. 2008; Sugi et al. 2009, 2012; Zhao et al. 2009; Xie et al. 2010; Zhao and Held 8 

2011; Ramsay and Sobel 2011; Camargo et al. 2012; Vecchi et al. 2012). Supporting the 9 

notion of relative SST as a predictor for Atlantic hurricane activity, dynamical modeling 10 

studies have found that the threshold for TC genesis under projected climate changes 11 

over the 21st century increases along with the overall tropical warming (e.g. Knutson et 12 

al. 2008). The interannual, decadal and climate change response of North Atlantic TC 13 

frequency simulated with a across a range of dynamical frameworks is also well 14 

explained by relative SST (e.g., Vecchi et al. 2008; Sugi et al. 2009, 2012; Zhao et al. 15 

2009, 2010; Vecchi et al. 2011; Villarini et al. 2011.a; Knuston et al. 2012; Zhao and 16 

Held 2012), although strong departures from moist adiabatic warming can complicate 17 

relative SST models of hurricane frequency (e.g., Vecchi et al. 2012). 18 

Following Vecchi et al. (2011), we model the rate of occurrence (λ; the expected 19 

value of the aggregate seasonal number) of North Atlantic hurricane frequency using a 20 

Poisson regression model as follows: 21 

  (Eq.1) 22 

! 

" = e1.707+1.388SSTMDR #1.521SSTTROP
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where SSTMDR and SSTTROP are anomalies in the regional SST indices relative to the 1 

1982–2005 average, as described in Section II.C. SSTMDR is the average over the 2 

hurricane main development region (80°W-20°W, 10°N-25°N), and SSTTROP is the 3 

global, 30°S-30°N average of SST. As discussed in Vecchi et al. (2011), this statistical 4 

emulator of the sensitivity of hurricane frequency to SST changes in the Zhao et al. 5 

(2009, 2010) high-resolution atmospheric model was trained across a broad range of 6 

climate states, including multiple realizations of the historical period and various 7 

projections of 21st century SST change. This statistical model was trained against a wide 8 

range of climate states, and its performance against the observed record satisfies a 9 

necessary condition for its application to interannual to decadal prediction (Vecchi et al. 10 

2011). The parameters in this statistical emulator, built on the output of a high-resolution 11 

AGCM, are very similar to those that arise from modeling adjusted hurricane frequency 12 

over the 1878-2008 period (Villarini et al. 2012). This statistical emulator is able to 13 

reproduce much of the observed variability in hurricane activity (r2=0.58; Vecchi et al. 14 

2011), and its ability to recover changes in hurricane frequency compares well with 15 

hindcasts and projections from high-resolution dynamical models (e.g., Zhao et al. 2009, 16 

2010; Villarini et al. 2011a; Knutson et al. 2012). The low computational cost of the 17 

statistical emulator allows us to efficiently perform a variety of retrospective forecasts 18 

using multiple input datasets, described below. 19 

B. Global climate model predictions: 20 

The statistical emulator (described above) is applied to predictions of SST from two 21 

global climate models: NOAA Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 22 

and UKMetOffice (UKMO) Decadal Prediction System (DePreSys) Perturbed Physics 23 
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Ensemble (PPE), referred to as GFDL-DecPre and UKMO-DePreSys, respectively. The 1 

forecast system specifications are summarized in Table 1. These models are just two of 2 

those what will be part of the CMIP5 decadal prediction experiments, although the 3 

CMIP5 version of UKMO-DePreSys is slightly different from the one used here. 4 

Exploration of those models allows us to compare the behavior of a prediction system 5 

that has shown skill in interannual hurricane predictions using the hybrid statistical-6 

dyanmical framework (GFDL-DecPre; Vecchi et al. 2011) and also to apply the hybrid 7 

framework to a model system that has shown high multi-year correlations using an 8 

alternative approach (UKMO-DePreSys; S10). Additionally, these two models generated 9 

a full ensemble of initialized predictions each year, rather than every five years as in 10 

many other CMIP5 experiments (Meehl et al. 2012), allowing us to more fully explore 11 

past performance. 12 

The GFDL decadal climate hindcasts (GFDL-DecPre) are carried out over the period 13 

1961-2011 using the GFDL CM2.1 coupled system (Delworth et al. 2006), in which both 14 

the atmosphere and the ocean are initialized through a full-field assimilation to bring the 15 

state of the coupled model close to observations. The initial conditions are produced with 16 

the GFDL fully coupled reanalysis ECDA3.1, which is based on an ensemble Kalman 17 

filter (Zhang et al. 2007; Zhang and Rosati 2010; Chang et al. 2011b) and has been 18 

shown to produce a realistic ocean mean state and variability (Chang et al. 2012). Ten-19 

member ensembles are produced starting from the first of January every year from 1961 20 

to 2011 and run for ten years. Historical radiative forcing is used for the 1961-2005 21 

period and the Representative Concentration Pathways (RCP) 4.5 scenario for the 22 

predictions starting after 2005. A ten-member ensemble of uninitialized runs with the 23 
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same forcings has also been produced to investigate the impact of initialization. This 1 

forecast suite is further discussed in Rosati et al. (2012), and its retrospective skill in 2 

predicting Atlantic Multidecadal Oscillation-like variability is described in Yang et al. 3 

(2012). 4 

DePreSys (Smith et al. 2007) is based on the third Hadley Centre coupled global 5 

climate model, HadCM3 (Gordon et al. 2000). The UKMO-DePreSys Perturbed Physics 6 

Ensemble (PPE; S10) is an updated version that uses a nine-member ensemble of model 7 

variants that aims to sample model uncertainties through perturbations to poorly 8 

constrained atmospheric and surface parameters. Initial conditions are created by relaxing 9 

the model's components toward atmospheric (European Centre for Medium Range 10 

Weather Forecasting Analysis and Reanalysis) and oceanic (Smith and Murphy 2007) 11 

analysis, with values assimilated as anomalies with respect to the model climate. The 12 

purpose of anomaly assimilation is to minimize climate drift after the assimilation is 13 

switched off, but this does not totally suppress the bias as discussed in Robson (2011). 14 

The ten-year long decadal retrospective forecasts consist of nine-member ensembles 15 

starting from the first of November every year from 1960 to 2005. A parallel set of nine 16 

uninitialized experiments using the DePreSys-PPE is also used, and is referred to as the 17 

UKMO-DePreSys uninitialized forecast runs. The DePreSys experiments do not include 18 

future volcanic information in them, only volcanic aerosols from eruptions prior to the 19 

initialization; thus, each initial year has a unique suite of uninitialized experiments. We 20 

use the UKMO-DePreSys-PPE data, rather than the CMIP5 UKMO-DePreSys output in 21 

order to have a comparison to the results of S10. 22 
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We also perform a two-model average prediction by first running the statistical 1 

emulator on the output from each model, and then averaging the predicitons of the two 2 

models. Previous experience with interannual hurricane forecasts indicates that a two 3 

model average can have advantages over each individual model (Vecchi et al. 2011). 4 

Further work with the full suite of CMIP5 models is underway (Caron et al. 2012, in 5 

preparation). 6 

C. Lead-dependent climatology: 7 

The statistical hurricane emulator is defined in terms of SST anomalies with respect 8 

to the 1982-2005 climatology (Vecchi et al. 2011). The initialized and uninitialized 9 

model forecasts have their own climatology, which –for initialized forecasts using both 10 

models and for uninitialized forecasts using UKMO-DePreSys-PPE – can depend on the 11 

lead-time of the forecast. The uninitialized forecasts of DePreSys-PPE have a lead 12 

dependent climatology because the history of radiative forcing seen by forecasts 13 

verifying on the same year can depend on the initialization year, since no “future” 14 

volcanic information is included in these uninitialized experiments. Therefore, we define 15 

a different climatology for each experiment (initialized and uninitialized), for each model 16 

(GFDL-DecPre and UKMO-DePreSys-PPE). For the initialized model experiments we 17 

build a climatology that depends on lead-time by averaging, for each lead-time between 18 

one and ten years, the forecasts that verify in the years 1982-2005. We choose this as our 19 

reference period for two principal reasons: i) the statistical model of Vecchi et al. (2011) 20 

was trained referenced to 1982-2005, and ii) as a trade-off between trying to train over a 21 

period in which the observing system used to initialize the forecasts was relatively stable 22 

and the desire to have a long record to faithfully define the model drift. Using other 23 
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reference periods does not alter the principal results of this manuscript. To compute the 1 

model climatology we average all ten ensemble-members for GFDL-DecPre, but since 2 

UKMO-DePreSys-PPE is a “perturbed physics ensemble” a different climatology is 3 

defined for each of its nine ensemble members. Note that a key impact of subtracting the 4 

lead-dependent climatology is to remove a systematic bias that arises in the forecasts as 5 

the models drift toward their own mean state when initialized with observations 6 

(Stockdale 1997; ICPO 2011). The drift of the models used here is towards each model’s 7 

free running climatology, though even after ten years there are regions where the 8 

initialized experiments have not yet settled at the free running climatology – these 9 

regions tend to roughly coincide with the regions where a potentially predictable decadal 10 

signal has been identified in the literature (e.g., Yang et al. 2012). A key assumption is 11 

that the systematic drift of the models does not depend on initialization period – that is, 12 

that the systematic drift does not depend on the changes to the climate observing system 13 

that have occurred in the last 50 years. The stationary drift assumption has been shown to 14 

be problematic in interannual predictions, where change in observing system can modify 15 

the drift, and a suggested solution is to use different lead-dependent climatologies across 16 

major changes in observing system (e.g., Kumar et al. 2012). The assumption that the 17 

drift is stationary will be further discussed in Section IV. 18 

D. Skill measures: 19 

We explore two statistical measures to quantitatively assess retrospective 20 

performance: anomaly correlation coefficient (ACC), and mean squared skill score 21 

(MSSS). These statistics are not independent, but offer slightly different views of the 22 

forecast model skill. ACC is the sample correlation coefficient as a function of lead time 23 
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 (or an average of lead times), between a set of forecast anomalies  and observed 1 

anomalies , over  years after removing the mean of each: 2 

 (Eq.2)

 3 

 4 

where ,  and the overbar denotes the time mean over the 5 

climatological period 1982-2005, which is a function of lead time . ACC values can 6 

range from -1 to 1, and they measure the degree to which large positive and negative 7 

excursions from the mean co-occur in the forecast and verification. 8 

The root-mean squared error (RMSE) is often used as a measure of accuracy of the 9 

forecasts. It is defined as the square root of the mean squared error (MSE) 10 

 (Eq.3)
 11 

We use here a related statistical measure, the mean squared skill score (MSSS; 12 

Murphy 1998) following recommendations by Goddard et al. (2012). MSSS is based on 13 

the mean squared error (MSE) between the forecast and the observed climatology and 14 

represents the improvement in accuracy of the forecast over climatology: 15 

 (Eq.4)
 16 

The highest MSSS value of 1 is reached when  and .  17 

Instead of using climatology as reference forecast one can use the MSE of the 18 

uninitialized projections ( ) to evaluate the improved skill due to initialization: 19 
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             (Eq.5)
 1 

where a positive MSSS indicates that the initialized forecasts outperform the uninitialized 2 

ones. MSSS can be expressed as a function of correlation and conditional bias (Goddard 3 

et al. 2012), which is useful when interpreting an improvement of skill due to 4 

initialization.  5 

E. Assessment of statistical significance: 6 

We explored three different estimates to assess statistical significance of the 7 

correlation results against a null of zero correlation, and to compute the confidence 8 

intervals of the retrospective correlations. For the estimates of statistical significance the 9 

effective number of degrees of freedom (Neff) of the correlation of two time-series (X and 10 

Y) was computed using the methodology described in Bretherton et al. (1999), using the 11 

biased estimates of autocorrelation spectrum of the various time-series: 12 

!!"" =
!

(!! ! /!)!!!!!!!!!
!!!

            
(Eq.6)

 13 

where N is the number of samples in each time-series, and !!! and !!!is the estimate of 14 

autocorrelation of each time-series at lag τ. Because of the large autocorrelation of the 15 

time-smoothed predicted and observed hurricane time-series at even long lags, the 16 

effective degrees of freedom can be considerably smaller than the number of years in the 17 

time-series. Typically, when compared to observations, the five-year mean initialized 18 

forecasts tend to have between 6-8 effective degrees of freedom and the uninitialized 19 

forecasts tend to have between 10-12 effective degrees of freedom – even though there 20 

are around fifty years of data that are compared. Without accounting for the strong 21 

autocorrelation in these time-series, one would estimate much narrower confidence 22 

! 

MSSS(t) =1" MSEF (t)
MSEP (t)
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intervals and a smaller p-value for the null hypothesis; failure to account for the 1 

diminished degrees of freedom can lead to a substantial overestimation of forecast skill. 2 

Though hurricane frequency is not Normally-distributed, we are exploring multi-year 3 

averages of hurricane frequency, which allows us to approximate the distribution as 4 

Normal. To compute confidence intervals of a correlation we use a two-sided test (since 5 

it is possible that initialization could lead to degradation in performance), and use a one-6 

sided test against the null hypothesis of zero correlation (since a significantly negative 7 

correlation would be a failure of the forecast system), we have compared the results from 8 

three methods: 9 

i) Fisher’s-z Transformation: The sample estimate of the correlation coefficient 10 

between two time-series (X and Y), !!,!, is transformed using: 11 

!!,! = 0.5ln   1+ !!,! / 1− !!,!          
(Eq.7)

 12 

The new quantity, !!,!, follows a z distribution with Neff-3 degrees of freedom 13 

(Fisher 1915, 1924; von Storch and Zwiers, 1999). Using standard z-statistic 14 

tables one can estimate the confidence intervals on the mean and test against a 15 

null of zero mean from the sample estimate, !!,!. To transform the confidence 16 

interval estimates of the z-statistic back to correlation space, we employ the 17 

inverse Fisher’s-z Transformation: 18 

!!,!∗ = !!!!,!
∗

!!

!!!!,!
∗

!!
        

(Eq.8)
 19 

where !!,!∗  is the estimate of the upper or lower bound on the confidence 20 

interval of the z-statistic and !!,!∗  is the estimate of the upper or lower bound 21 

on the confidence interval of the correlation coefficient. 22 
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ii) Full distribution of the correlation coefficient: 1 

Johnson et al. (1995) provide the distribution of the sample correlation 2 

coefficient R when the population correlation coefficient ρ is equal to zero: 3 

( )[ ]
( ) ( )[ ]( ) 11,1

2/22/1
2/1)( 2/)4(2 <<−−

−ΓΓ
−Γ

=
− rforr

n
nrp n

R
             (Eq.9)

 4 

where Γ(·) is the gamma function, n is the sample size. This distribution is 5 

symmetric around the zero. By using pR, we can test the null hypothesis of no 6 

correlation at a given significance level α, by checking whether the sample 7 

correlation coefficient lies within or outside the rejection or critical region. 8 

iii) Monte Carlo estimate: For sample sizes ranging between 2 and 100, we build 9 

100,000 estimates of the distribution of the sample correlation coefficient 10 

between two normally-distributed time-series of length Neff and an underlying 11 

correlation ρ. We sample underlying correlation coefficients between -1 and 12 

1, at intervals of 0.01. From this Monte Carlo estimate of the probability 13 

density function of the sample correlation coefficient, we estimate 14 

significance against a null of zero correlation as the probability of a 15 

correlation as large as or larger than a particular sample correlation given an 16 

underlying correlation of zero. In an analogous manner, we also compute the 17 

confidence intervals on the sample correlation given an underlying 18 

correlation.  19 

We have compared the three estimates of the confidence intervals on the 20 

correlation coefficient and null test against a correlation of zero for the 21 

retrospective forecast correlations, and have found that they are consistent with 22 
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each other. For simplicity, in the manuscript we only show the estimates from the 1 

Fisher’s-z transformation. 2 

III. Results 3 

A. Retrospective Hurricane Forecasts: 4 

Figure 1 shows the five-year mean and nine-year mean (centered on the mid-point of 5 

each interval) initialized and uninitialized forecasts of North Atlantic hurricane frequency 6 

in GFDL-DecPre and UKMO-DePreSys-PPE compared with observations. The observed 7 

record of five-year mean hurricane frequency is largely characterized by two distinct 8 

states with low values (~5-6 hurricanes per year) in the first half of the record and a shift 9 

in the mid-90s (e.g., Elsner et al. 2004, Li and Lund 2012) toward a more active state (~8 10 

hurricanes per year). The uninitialized predictions capture a tendency for an increase in 11 

hurricane frequency over the late-20th century, indicating that part of the recent increase 12 

in Atlantic hurricane frequency was due to changes in radiative forcing – consistent with 13 

other recent findings (e.g., S10; Villarini and Vecchi 2012.b-.c). However, the 14 

uninitialized experiments fail to capture the abrupt shift in the mid-1990s. The initialized 15 

retrospective forecasts show better qualitative agreement to observations than do the 16 

initialized runs, suggesting an improvement from initialization.  17 

Despite the time averaging, both observations and the model predictions have year-to-18 

year variability in five-year North Atlantic hurricane frequency, which complicates 19 

detection of decadal changes (Figure 1). The year-to-year variations in the multi-year 20 

initialized forecasts are larger than that in observations, even though the forecasts are 21 

ensemble averages. This result is particularly striking given that the statistical emulator 22 

should only recover a fraction of the observed variance, and suggests that the initialized 23 
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forecasts have too much internal variability. An alternative interpretation, which is 1 

discussed further in Section III.C below, is that the initial conditions for each year’s 2 

initialization are persisted too strongly, so that each initialization year’s climate reflects 3 

on the average of multiple subsequent years. 4 

The anomaly correlation between the observed hurricane counts and the models 5 

predictions for both initialized and uninitialized experiments is shown in Figure 2 for 6 

five-year and nine-year means. A persistence forecast is given as a reference test forecast, 7 

where the five-year (nine-year) mean persistence is defined as the observed average over 8 

the five (nine) years that precede the model’s initialization (persisting the SSTA indices 9 

does not improve the performance of the persistence null model, with correlations 10 

ranging between 0.16-0.4 depending on the SST dataset used). So, for example, the 11 

persistence forecast for the lead 2-6 forecast centered in 1992 (e.g., initialized in 1989) is 12 

the observed hurricane count averaged over 1984-1988. Consistent with Figure 1, at lead 13 

2-6 the initialized retrospective predictions show higher correlations than the uninitialized 14 

ones, for both models. The values are significantly different from zero and exceed the 15 

values given by persistence, which is not the case for the uninitialized predictions. 16 

Comparable skill is found between the two models, slightly higher in UKMO-DePreSys; 17 

these retrospective correlations are comparable to those reported in S10 using an 18 

alternative methodology applied to DePreSys-PPE. Computing the two-model mean 19 

increases the signal-to-noise ratio, leading to higher correlations than in either individual 20 

model. At lead 2-10, all the predictions outperform the persistence forecast. The decadal 21 

correlations are nominally higher in the initialized retrospective predictions than in the 22 

uninitialized, with the largest values, exceeding 0.8, when taking the two-model mean. 23 
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This decadal skill does not come only from the first few years since the correlations at 1 

lead 6 to 10 are also large (Figure 2), although the improvement due to initialization is 2 

not as clear. At lead 6-10, GFDL-DecPre shows larger correlations for the initialized 3 

predictions but UKMO-DePreSys indicates higher values for the uninitialized runs, 4 

yielding undistinguishable values between the initialized and the non-initialized 5 

experiments for the two-model mean.  6 

These results suggest that coupled GCMs that account for both changes in initial state 7 

and radiative forcings can lead to skillful multi-year retrospective predictions of 8 

hurricane frequency. The nominal improvement due to initialization should, however, be 9 

interpreted with care given the large confidence intervals associated with the point 10 

estimates of the correlations (Figure 2). As discussed above in Section II.E, although the 11 

observed record is 50-years long, because of the large autocorrelation of the time series 12 

each year is not independent from those nearby. Hence, the effective number of degrees 13 

of freedom is largely reduced to less than ten for most lead times, as indicated on Figure 14 

2, based on Bretherton et al. (1999). Therefore, even if the initialized predictions give a 15 

correlation that is statistically different from climatology and is nominally higher than in 16 

the uninitialized predictions, the large confidence intervals indicate that the retrospective 17 

correlation of the initialized forecasts is not different from persistence or the uninitialized 18 

experiments at p=0.1. Some of the correlations of the initialized forecasts are 19 

significantly larger than the non-initialized experiments at p=0.2.  20 

The non-significance of the difference between the initialized and non-initialized 21 

correlations does not depend strongly on the effective sample size, as long as some level 22 

of autocorrelation is assumed. We recomputed the confidence intervals on the sample 23 
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correlations using an unrealistic assumption that two years were needed for each new 1 

degree of freedom, and the initialized to uninitialized correlation differences were still 2 

not significantly different at p=0.1. If we assume, even more unrealistically, that a new 3 

degree of freedom is achieved every 1.5 years, then the differences between the 4 

initialized and uninitialized experiments are significant at p=0.1. However, we wish to 5 

stress that these perturbation experiments yield an extremely unrealistically high estimate 6 

of the number of degrees of freedom, considering we are exploring five-year running 7 

averages of quantities with a pronounced trend and interdecadal variation. The record is 8 

too short, and the difference between initialized and uninitialized correlations too small, 9 

to yield a statistically significant difference. 10 

Improvement from initialization on the two-model mean lead 2-6 forecast is close to 11 

being significant even at p=0.1, suggesting potentially higher confidence in multi-model 12 

ensembles. For the lead 2-6 and 2-10 forecasts, for both model systems there is a 13 

consistent nominal improvement of retrospective correlation from initialization relative to 14 

the uninitialized experiments. Because of this, and because of the small sample size, we 15 

speculate that the lack of significance at p=0.1 may reflect a “lack of power” by the 16 

significance test, rather than a “lack of effect” from initializing (Johnson 1999). For the 17 

lead 6-10 forecast, however, the nominal difference between the initialized and non-18 

initialized forecasts changes sign (there is nominal indication of improvement in GFDL-19 

DecPre, but a nominal degradation in UKMO-DePreSys-PPE), so we interpret the lack of 20 

significance in this case as indicating a lack of effect from initialization. Therefore, it 21 

appears that the nominal improvement in the lead 2-10 forecast arises in the first part of 22 

the decade, and represents potential multi-year forecast skill rather than decadal skill. 23 
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A lagged ensemble approach, in which past forecasts are used to augment the 1 

effective ensemble size of more recent forecasts (e.g., by creating a forecast where the 2 

current year’s lead 1-5 and the previous year’s lead 2-6 forecasts are averaged), can lead 3 

to increase in forecast performance (e.g., Vecchi et al. (2011) showed improvement in 4 

interannual hurricane forecasts from lagged ensembles). We explored the impact of 5 

lagged ensembles in the retrospective hurricane forecasts (not shown) at lags of up to 6 

three years (i.e., averaging lead 1-5, 2-6 and 3-7 verifying the same years together) 7 

resulted in nominal improvements in the correlation coefficient (on the order of 0.02-8 

0.05). However, the smoothing induced by the lagged ensemble led to a further reduction 9 

of degrees of freedom. Since the uncertainty in a correlation estimate increases with 10 

decreasing correlation or sample size, the uncertainty estimates on the correlation 11 

coefficient did not show substantial change: even after lagged-ensemble averaging the 12 

retrospective correlation of the uninitialized and initialized forecasts were in each other’s 13 

confidence intervals.  14 

As a complement to the skill estimate using ACC, we show in Figure 3 the MSSS for 15 

various five-year mean and nine-year mean leads. Both the improvement relative to 16 

climatology (Eq.4) and that due to initialization (Eq.5) are indicated on the x- and y-axis, 17 

respectively. None of the retrospective initialized forecasts has a negative MSSS on the 18 

x-axis, which indicates at least a nominal improvement relative to climatology. An 19 

improvement due to initialization is also suggested at all leads in GFDL-DecPre, and at 20 

most leads except 5-9 and 6-10 in UKMO-DePreSys, leading to a smaller MSSS at those 21 

lead times for the two-model mean. Both models indicate an improved skill at decadal 22 

scale due to initialization, with the highest values in UKMO-DePreSys. As shown in 23 
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Goddard et al. (2012), the MSSS is a function of both the correlation and the conditional 1 

bias, and the higher MSSS due to initialization is mainly due to a reduction of the 2 

conditional bias that is large in the uninitialized predictions. 3 

B) SST-source of hurricane forecast skill 4 

Our hurricane frequency index is based on SST averaged over the tropical Atlantic 5 

and over the global tropics (Eq.1), so both quantities are potential sources for the better 6 

predictability in the initialized forecasts. We can explore retrospective forecasts and skill 7 

measures of these two indices with hope of finding the role each had in recovering the 8 

past history of hurricane activity (Figure 4). Overall, there is no indication that 9 

retrospective forecasts of tropical-mean SST are improved by initializing the coupled 10 

GCMs (upper panels, Figure 4), with the relatively monotonic warming of the tropics 11 

dominating the observed and modeled signals. The dominance of the long-term trend in 12 

both SST indices cuts the effective degrees of freedom severely, to the point where for 13 

tropical-mean SST interpretation of correlation as a skill metric is likely too ambiguous 14 

to be useful. The GFDL-DecPre system has marginally higher retrospective correlation in 15 

both SST indices than does UKMO-DePreSys, likely due to inclusion of future volcanic 16 

information in its radiative forcing (Table 1). However, this nominally larger skill in 17 

GFDL-DecPre for the two SST indices does not translate into even nominal increase of 18 

the hurricane forecasts (Figure 2) since the volcanic signals are primarily spatially 19 

uniform. Across both model systems there is a consistent nominal improvement of 20 

retrospective correlation of Atlantic MDR SST predictions from initialization, but the 21 

effect is small relative to the number of degrees of freedom. Only in the GFDL-DecPre 22 

does the initialized forecast of MDR SST approach a significant improvement over a 23 
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persistence forecast. Because of the dominance of a quasi-monotonic trend, for tropical-1 

mean SST all the forecast methods (initialized and uninitialized GCM forecasts and 2 

persistence) yield comparable results. For both SST indices all of the forecast 3 

methodologies lead to statistically significant retrospective correlations against a null of 4 

zero correlation, again largely because of the dominance of a trend. 5 

The results in Figure 4 suggest that the nominal improvement in retrospective 6 

correlation from initialization came from improvements to forecast of Atlantic MDR 7 

SST. However, since the time series of each SST index includes a substantial component 8 

that is coherent across both indices, and since the hurricane frequency emulator is based 9 

on the difference between the two indices, interpreting the source of hurricane 10 

predictability from each index is not necessarily straightforward, as was noted in Vecchi 11 

et al. (2011). An alternative approach to assessing influence of each index on the role of 12 

initialization on forecast skill is to use values of one index from the initialized 13 

experiments and the other from the uninitialized experiments. For example, taking values 14 

for SSTMDR from the initialized experiment, but keeping the SSTTROP from the 15 

uninitialized one, yields comparable hurricane retrospective forecast results (Figure 5a) to 16 

when both indices are taken from the initialized experiments (Figure 2). The impact of 17 

initialization on SSTMDR yields five-year mean fluctuations of this hurricane frequency 18 

index that show rather good agreement with observations for both models with a 19 

correlation of 0.70 and 0.59 in GFDL-DecPre and UKMO-DePreSys, respectively (both 20 

significantly different from zero correlation at p<0.05) at lead 2-6. Using values for 21 

SSTMDR from the uninitialized experiments but those of SSTTROP from the initialized 22 

experiments leads to very different results (Fig 5.b). The correlation drops to 0.21 in 23 
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GFDL-DecPre and to 0.43 in UKMO-DePreSys, with neither correlation significantly 1 

different from ρ=0 (even at p<0.2) nor either model able to reproduce the observed sharp 2 

increase in the mid 90s. This indicates that the nominal improvement in correlation in the 3 

initialized multi-year predictions results from a better representation of the Atlantic main 4 

development region when initializing the coupled models, with little beneficial impact 5 

from initialized predictions of the global mean tropical SST.  6 

For the GFDL-DecPre system the difference in retrospective correlation when 7 

swapping initialized/uninitialized SSTMDR and SSTTROP is significant at p<0.1. Note in 8 

Figure 5.b there is a large increase in hurricane frequency around 2005 in GFDL-DecPre, 9 

as appeared in Fig1.a. This increase, which we currently consider to be spurious, is a 10 

large contributor to the reduction in correlation from the impact of initialization on 11 

tropical-mean SST in the GFDL model. There is a coincidence between the global 12 

implementation of the “Array for Real time Geostrophic Oceanography” (or Argo) 13 

drifting float profiles in 2003 and the spurious shift of nine-year forecasts centered 14 

around 2005-2006, suggesting that enhanced observational sampling after 2003 may have 15 

led to a change in the lead-dependent climatology. Experiments are underway to test this 16 

possibility. The lack of such a spurious increase in UKMO-DePreSys could arise from 17 

different initialization processes, or from the fact that the last initialized forecast in 18 

UKMO-DePreSys begins in 2006 – so the late spike would not be evident. Were the 19 

introduction of Argo found to be the driver of this spurious increase, in addition to 20 

developing methods to minimize the impact of observing system changes, the impact of 21 

other large changes to the observing system must also be explored (e.g., the introduction 22 

of altimetry in the early 1990s and the completion of the TAO array in the mid-1990s). 23 
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C) Role of the mid-1990s climate shift: 1 

The nominal improvement in skill due to initialization should be interpreted with 2 

care. Even if the initialized retrospective predictions outperform climatology at almost all 3 

lead times (Figure 3), the skill could still come from persistence – just persistence that 4 

cannot be captured with our observationally-based persistence model. Figure 6a and 6b 5 

compare the retrospective predictions of hurricane frequency for five-year means ranging 6 

between lead 1-6 to lead 6-10. The forecasts at each lead show a tendency to have a 7 

systematic one year shift with respect to the preceding lead, with the mid-1990s shift in 8 

each model trailing in time for longer leads rather than capturing the observed 1995 shift 9 

(e.g., Elsner et al. 2004, Li and Lund 2012) at the right time. By performing change point 10 

analysis (Pettitt test) on the models' retrospective predictions, we find a shift in forecasts 11 

initialized in 1991 in UKMO-DePreSys and forecasts initialized in 1995 in GFDL-12 

DecPre. This tendency for forecasts to lock across the shift can be seen more clearly 13 

when the same time series are plotted as a function of initialization year instead of 14 

verification time (Fig 6c and 6d): forecasts initialized the same year are very similar to 15 

each other, independent of when they verify. Notice that the mid-90s shift for each model 16 

appears at the same initialization year for all lead times, as does the potentially spurious 17 

mid-2000s shift in GFDL-DecPre.  18 

Up to now we have been largely comparing the results of forecasts initialized 19 

different years at the same lead, without focusing on the evolution of hurricane counts of 20 

each forecast as the lead increases. A correct forecast of the mid-1990s climate shift 21 

would have indicated at some point prior to the shift that there was an increased 22 

probability of hurricane frequency increasing in time. For example, if a forecast 23 
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initialized in early 1991 showed counts averaged in 1992-1996 that were larger than 1 

those in 1991, or an increased number of ensemble members with large increases, one 2 

would have evidence for a future shift. Do these two forecast systems produce such a 3 

shift? Figure 7 shows that in the observational record, reflecting the rapid increase in 4 

frequency in 1995, the difference in hurricane counts averaged over the five years 5 

following the years 1991 through 1994 exceeded the counts over each of those years by 6 

an unusually large amount, relative to the distribution over the 1961-2006 period. 7 

However, neither forecast system (colored lines in Figure 7) shows a tendency for their 8 

forecasts to increase in time relative to the first forecast year when initialized in the early 9 

1990s. In fact, there is a nominal tendency for these forecasts to decrease in time from the 10 

first forecast year, relative to the distribution of tendencies across all initialization dates, 11 

1961-2006. That is, the models did not forecast a tendency towards higher frequency in 12 

the mid-1990s (Figure 7), even though the sequence of forecast values exhibits a climate 13 

shift in the mid-1990s (Figures 1, 6).  14 

To further highlight the influence of the mid-1990s shift on the retrospective skill 15 

estimation, we explore forecast performance after removing the mid-90s shift from both 16 

the forecasts and the observations. The shift is “removed” by simply referencing each 17 

period before and after the 1994-1995 shift to its own climatology; for instance, the time-18 

mean hurricane count preceding 1995 is removed from all years before 1995, and the 19 

time-mean hurricane count following 1995 is removed from all years after 1995. We note 20 

that using each model’s change-point instead of 1995 does not affect the character of the 21 

results. Figures 8 and 9 indicate that removing the shift leads to a substantial reduction of 22 

correlation in the initialized predictions at lead 2-6 (particularly for UKMO-DePreSys-23 
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PPE), and no indication of skill beyond that lead time, further confirming that the decadal 1 

signal is dominated by the trend that arises from the existence of the mid-90s change 2 

point. Therefore, future real (as opposed to the retrospective forecasts explored here) 3 

multi-year and decadal predictions of hurricane frequency should not be expected to 4 

show the same skill as over the 1961-2011 period unless there are change points of 5 

similar character to the mid-1990s shift. Our results are encouraging for the feasibility of 6 

multi-year forecasts of hurricane frequency with the current prediction systems. 7 

However, this analysis highlights that substantial challenges remain – or, viewed more 8 

optimistically, that it is possible to improve the performance of the system beyond its 9 

current capability. 10 

An interesting side effect of removing the mid-1990s shift is to increase the effective 11 

degrees of freedom, narrowing the confidence intervals associated with the point 12 

estimates of the correlation coefficient (compare Figures 2 and 9). In addition, the 13 

retrospective correlation in the uninitialized forecasts without change-point disappeared – 14 

since it largely arose from the projection of the observed shift onto the models’ forced 15 

trend over this period. In this modified context, there is now indication that for the GFDL 16 

model and the two-model ensemble the correlations (although lower than in the case 17 

including the shift; Figure 2) are significantly higher than those of the uninitialized 18 

versions of the model at lead 2-6. That is, there is significant (at p<0.1) indication that 19 

GFDL-DecPre and the two-model ensemble may be able to predict the types of variations 20 

in hurricane frequency that occurred in the early-1980s and early-1990s better than the 21 

uninitialized experiments. In Figure 2, the nominal improvement from initialization in the 22 

correlation of the lead 2-6 and lead 6-10 mean hurricane counts in GFDL-CM2.1 was 23 
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larger than that for the lead 2-10 forecasts; this may reflect the ability of GFDL-CM2.1 to 1 

retrospectively forecast some multi-year variations beyond the 1994-1995 climate shift – 2 

which is the dominant signal in the nine-year running counts. This further highlights the 3 

limitations of a data record that is short relative to the dominant timescales in order to 4 

assess the impact of multi-year forecast skill. While it is entirely possible that some of the 5 

non-significant differences between the initialized and uninitialized models shown in 6 

Figures 2 and 3 could become significant from a longer record, it is also possible that the 7 

impact of initialization could also decrease and remain non-significant in a longer record. 8 

 9 

IV Summary and Discussion 10 

 Predictions of North Atlantic hurricane frequency were investigated in two global 11 

coupled models initialized towards estimates of the observed climate state. We find 12 

statistically significant retrospective correlation of multi-year to decadal initialized 13 

hurricane frequency forecasts by accounting for both initialization and radiative forcing 14 

changes. The two systems explored, GFDL-DecPre and UKMO-DePreSys-PPE, show 15 

comparable skill. The two-model mean had the best skill, encouraging the pursuit of 16 

broader multi-model studies (e.g., Caron et al. 2012); lagged averages lead to nominal 17 

correlation increases. The retrospective correlations from initialized multi-year hurricane 18 

forecasts are comparable to those reported in Smith et al. (2010; S10) using an alternative 19 

methodology.  20 

Taken together, our results and those of S10 indicate that initializing a climate model 21 

and accounting for radiative forcing changes, together, can lead to significant 22 

retrospective skill in multi-year initialized (relative to climatological forecasts). The 23 
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performance of the initialized forecasts was nominally better than that of uninitialized 1 

forecasts, both in correlation and in MSSS (Goddard et al. 2012). However, because of 2 

the short observational record and the persistent character of the time series, the 3 

confidence intervals associated with all the forecasts are large, and the difference 4 

between initialized and uninitialized forecasts is not statistically significant at p=0.1 5 

(although some are at p=0.2). Because of the consistency of correlations across studies 6 

and the visual improvement, we hypothesize that lack of significant improvement from 7 

initialization may indicate of lack of “power” (i.e., the probability that the test will 8 

correctly reject the null hypothesis) by the statistical test (arising from too few degrees of 9 

freedom and a relatively strong correlation arising from radiative forcing alone) rather 10 

than a lack of effect of initialization (e.g., Johnson 1999). Additional years could lead to 11 

enhancement of our confidence; however, the large autocorrelation of the time series 12 

indicates that we require about seven years of data to gain a degree of freedom – so many 13 

years will be required to improve our confidence, even if we include the past 50 years in 14 

future estimates of forecast skill. 15 

The observed time series of North Atlantic hurricane frequency is dominated by a 16 

strong and abrupt rise in 1995 leading to a trend over the 1961-2011 period. The high 17 

correlations of the retrospective predictions of North Atlantic hurricane frequency depend 18 

on the presence of this shift. While predictions from both models are for more hurricanes 19 

after the mid-90s than before, the increase is not actually predicted by the evolution of the 20 

models, but is present in the initial state (i.e., forecasts initialized after the shift exhibited 21 

by each model remain high, but those initialized prior do not show the shift; Fig. 6-7). 22 

That is, the large retrospective skill estimates (Figures 2-3) do not come from predicting 23 
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the dynamical evolution of the climate system resulting in the hurricane frequency shift, 1 

but from “recognizing” that a climate shift has occurred and persisting that shift. This 2 

behavior mirrors experience in seasonal forecasts of El Niño, where transition from 3 

climatological conditions to a warm ENSO state can be problematic to predict (e.g., 4 

Landsea and Knaff 2000; Vecchi et al. 2006), and successful forecasts often reflect the 5 

continued updating of subsurface conditions. This reduces our confidence that the onset 6 

of a similar shift in a near future could be successfully predicted with current prediction 7 

systems. It also highlights the need to better understand the origin of the change point in 8 

the observations and assess whether the modeled mechanisms are consistent with those in 9 

the real world (e.g., Robson et al. 2012).  10 

Despite high correlation values, the mean retrospective skill of these forecasts may 11 

provide a poor and even misleading guide to the future performance. In the absence of a 12 

major climate shift, like the 1994-1995 shift, the long-term estimates of correlation (e.g., 13 

0.6-0.9) are not representative, and the lower retrospective correlations assessed after 14 

removing the shift  (e.g., 0-0.4; Figs. 8-9) may be closer to those one should expect.  15 

Neither model system successfully predicts that the highest values of observed five-16 

year hurricane frequency that appear in the mid-2000s. GFDL-DecPre shows a 17 

comparable rise but five to ten years later than observed, whereas UKMO-DePreSys 18 

shows a more modest increase with a several-year delay as well. Forecasts with GFDL-19 

DecPre that extend past the present suggest an increase in hurricane frequency through 20 

the mid-2010s (Fig. 1). However, observations have been tending in the opposite 21 

direction, with recent years being less active than those in the mid-2000s. This period 22 

coincides with a fundamental change in the ocean observing system, with the global 23 
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introduction of Argo floats after 2003 bringing a considerably better coverage of the 1 

surface and subsurface ocean. Changes in observing systems have previously impacted 2 

the behavior of initialized forecasts, in part by changing the character of the initialized 3 

model’s drift (e.g., Kumar et al. 2012); therefore the introduction of Argo could impact 4 

the lead-dependent climatology.  5 

Thus, we hypothesize that this increase predicted by with GFDL-DecPre is spurious, 6 

and reflects the impact of Argo data on the GFDL-DecPre drift. To test this hypothesis a 7 

set of experiments was performed in which Argo data was withheld from the 8 

initialization scheme of GFDL-DecPre after 2004. The predicted abrupt increase after 9 

2004 is severely reduced when Argo is removed (Fig. 10), largely because of changes to 10 

model drift in regions that were poorly observed prior to Argo. These experiments 11 

support our hypothesis, so a more plausible prediction for the coming years is that shown 12 

in the left panel of Figure 5, in which there is a tendency for relative stability to a 13 

reduction of hurricane frequency in coming years. Changes in drift (lead-dependent 14 

climatology) arising from the introduction of Argo impact the character of predictions of 15 

tropical-mean and global-mean temperature in the GFDL-DecPre system, leading to 16 

spuriously cold predictions of both if a single lead-dependent climatology is used to 17 

analyze the pre- and post-Argo period. We speculate that related errors may arise in this 18 

other prediction systems due to observing system changes. Methodologies to deal with 19 

the impact of observing system changes on drift must be developed in order to fully 20 

realize the potential of multi-year predictions; as the post-Argo record lengthens, 21 

motivated by Kumar et al. (2012), a potential solution is to use different lead-dependent 22 

climatologies for the pre- and post-Argo period. In addition, the impact of other 23 
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observing system changes bear exploration, such as the introduction of the Pacific 1 

Tropical Atmosphere-Ocean moored buoy array in the early-1990s (McPhaden 1993) and 2 

expendable bathythermographs in the late 1960s. Interpretation of forecasts needs to be 3 

keenly constrained by our knowledge of changing observing practices both in the 4 

predictands (e.g., Vecchi and Knutson 2008, 2011; Landsea et al. 2010; Villarini et al. 5 

2011b) and in the observations used to initialize the climate model (e.g., Zhang et al. 6 

2007; Kumar et al. 2012).  7 

 Identifying the source of skill in retrospective predictions is key to the success of 8 

future forecasts. Recent studies (Mann and Emanuel 2007; Evan et al. 2009; S10; 9 

Villarini and Vecchi 2012b,c) have argued that the recent (since the 1980s) increase of 10 

Atlantic hurricane activity was not caused by internal variability alone but also included 11 

an externally-forced component driven largely by changing aerosol concentrations. Our 12 

results partially support this interpretation, indicating high correlations (significantly lead 13 

2-10) in the uninitialized forecasts. Yet the sharp mid-90s increase in Atlantic hurricane 14 

frequency is not retrospectively predicted in the uninitialized experiments. Its better 15 

representation in the initialized predictions could be interpreted as an indication of a key 16 

role for internal variability in the mid-1990s shift, supporting various studies (e.g., Zhang 17 

and Delworth 2005,2006,2009; Robson et al. 2012; Yeager et al. 2012; Msadek et al. 18 

2012). However, the nominal improvement from initialization could also reflect a failure 19 

in the radiative forcing/response in these models that is corrected when they are 20 

constrained with observations.  21 

 Our results indicate that the impact of initialization on forecasts of the Atlantic 22 

main development region (MDR) relative to the tropics was key to the higher skill in the 23 
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initialized forecasts (Figures 4 and 5). Zhang and Delworth (2006) suggested that multi-1 

year changes in hurricane activity could be driven by changes to the heat-transport over 2 

the entire North Atlantic. S10 and Dunstone et al. (2011) further suggested that the 3 

subpolar North Atlantic was the main source of multi-year predictability of Atlantic 4 

hurricane frequency. The North Atlantic also stands out as the region where initialized 5 

forecasts outperform uninitialized ones in the GFDL model (Rosati et al. 2012; Yang et 6 

al. 2012; Msadek et al. 2012), suggesting a potential link between North Atlantic 7 

variability and Atlantic hurricane predictability in GFDL DecPre. Further, Kang et al. 8 

(2008) showed that changes in the North Atlantic could lead to changes in atmospheric 9 

circulation over the tropical Atlantic in GFDL CM2.1. However, in our retrospective 10 

forecasts of hurricane activity, the relevant source of skill must have been present in 11 

tropical Atlantic SST – so any role for extratropical forcing must involve a subsequent 12 

change to tropical Atlantic SST. Thus, improved representation of processes controlling 13 

tropical Atlantic climate (e.g., Doi et al. 2012) are key to enhanced skill in forecasts of 14 

hurricane activity by systems like those used here. 15 
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Figure Captions: 1 

Figure 1: Retrospective and future forecasts of hurricane frequency. Upper panels show 2 

the retrospective forecasts for five-year running hurricane frequency, lower panels focus 3 

on the nine-year running forecasts. Left panels show the results from uninitialized 4 

experiments, while the right panels show the results for initialized experiments. Black 5 

line shows the observed five-year (upper) and nine-year (lower) hurricane counts from 6 

the NOAA Hurricane Database (HURDAT; Jarvinen et al. 1984, MacAdie et al. 2009) 7 

that includes an adjustment for observing inhomogeneity prior to 1966 described in 8 

Vecchi and Knutson (2011). Retrospective forecasts are shown in: red line shows the 9 

forecasts from the GFDL-CM2.1 system, blue line shows the UKMO-DePreSys-PPE 10 

system, and the yellow line shows the two-system ensemble-mean. 11 

 12 

Figure 2: Correlation for retrospective multi-year forecasts of North Atlantic hurricane 13 

frequency, with 90% uncertainty estimates. Each cluster of bars shows the retrospective 14 

correlation of multi-year hurricane frequency forecasts for Lead 2-6 years (left), Lead 6-15 

10 years (middle) and Lead 2-10 years (right). Gray symbol is the correlation of the 16 

persistence of the five-year average count preceding the initialization of the model. Red 17 

symbols are for the GFDL-DecPre system, blue are for UKMO-DePreSys-PPE, and 18 

yellow is for the two system average. The initialized and uninitialized versions of each 19 

model are distinguished by different coloring. The sample correlation estimate is shown 20 

by the circle, the bars show the two-sided 90% uncertainty of a correlation given an 21 

underlying correlation with the value shown by the corresponding circle. Asterisk on top 22 

of a bar shows correlations that are significantly different from a null hypothesis of an 23 
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underlying correlation of zero at p=0.1, single-sided, with the effective degrees of 1 

freedom estimated as in Bretherton et al. (1999). 2 

 3 

Figure 3: Mean Skill Score Squred (MSSS) of retrospective initialzed multi-year 4 

hurricane frequency forecasts for various leads and models. Horizontal axis shows the 5 

MSSS against climatology, vertical axis shows the MSSS against the unitialized 6 

forecasts; diagonal line indicates the one-to-one line. Left panel shows MSSS values for 7 

the five-year running-mean forecasts, right panel shows MSSS values for the nine-year 8 

running-mean forecasts. Circles show the values for the GFDL-DecPre system, squares 9 

for UKMO-DePreSys-PPE, and stars for the two-model ensemble mean. Different colors 10 

indicate different forecast leads. 11 

 12 

Figure 4: Retrospective and future forecasts of the SST indices used for the hurricane 13 

emulator. Left panels show time-series of the five-year mean SSTA anomalies averaged 14 

over the global tropics (upper) and Atlantic hurricane main development region (lower), 15 

at lead 2-6. Black lines show observational estimates from HadISST.v1 (Rayner et al. 16 

2003; solid) and ERSST.v3b (Smith et al. 2008; dotted). Colored lines show initialized 17 

(dashed) and uninitialized (solid) experiments from GFDL-DecPre (reds) and UKMO-18 

DePreSys-PPE (blue). Right panels show the retrospective correlations of the forecasts at 19 

Lead 2-6 against the HadISST.v1 SST product. 20 

 21 

Figure 5: Retrospective forecasts exploring the source of the initialized vs. uninitialized 22 

components. Left panel takes Atlantic MDR SST from initialized experiments and 23 
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tropical-mean SST from uninitialized, right panel takes tropical-mean SST from 1 

initialized experiments and Atlantic MDR SST from uninitialized experiments. The skill 2 

comes from the improvement of tropical Atlantic SST in the initialized experiments. 3 

 4 

Figure 6: Retrospective forecasts arranged by verification and initialization date. Top 5 

panels (a and b) show the retrospective forecasts of five-year running hurricane averages 6 

for various leads, arranged so that each point on the time axis corresponds to the midpoint 7 

of the five-year interval over which the average is computed (e.g., 1992 corresponds to 8 

the midpoint of the 1990-1994 average). Bottom panels (c and d) show the retrospective 9 

five-year forecasts for various leads arranged so that each point on the time axis 10 

corresponds to the date in which the model was initialized. Left panels are from the 11 

GFDL-CM2.1 forecasts, right panels are from the UKMO-DePreSys-PPE system. Dark 12 

line in the top panels shows the observed five-year running counts. 13 

 14 

Figure 7: Empirical probability density function (PDF) estimates for the change in 15 

seasonal hurricane counts over the entire record and over the four years that preceded the 16 

1994-1995 climate shift. The quantity explored is the difference in hurricane counts 17 

averaged over the five years following a given year with the counts of that year (e.g., for 18 

1991 it is the difference of hurricane counts averaged 1992-1996 with those in 1991); 19 

PDFs are estimated through Gaussian convolution with an e-folding scale of 2.5 20 

hurricanes per year. Black lines are based on observations, blue lines on the forecasts 21 

with GFDL-DecPre, and red lines on the forecasts using UKMO-DePreSys; solid lines 22 

are computed over the 1961-2006 period, dashed lines over 1991-1994. The separation of 23 
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the solid and dashed black line is a reflection of the increase in storm counts that occurred 1 

in 1995. Notice that there is no tendency for forecasts initialized in the early-1990s to 2 

have indicate a tendency for intensification through the early years of the forecast: the 3 

forecast systems do not dynamically predict the occurrence of the 1994-1995 shift. 4 

 5 

Figure 8: Retrospective forecasts of North Atlantic hurricane frequency after removing 6 

1994-1995 shift in the mean from forecasts and verification (see Section III.A). Left 7 

panel shows the initialized forecasts at lead 2-6, right panels show the uninitialized 8 

experiments. Black line shows the observed counts, red line is from the GFDL-DecPre 9 

system, blue line is from UKMO-DePreSys-PPE and the yellow line is the two system 10 

average, all after removing the 1994-1995 shift in the mean. 11 

 12 

Figure 9: Retrospective correlations of forecasts after removing 1994-1995 shift in the 13 

mean from forecasts and verification. Gray symbol is the correlation of the persistence of 14 

the five-year average count preceding the initialization of the model. Red symbols are for 15 

the GFDL-DecPre system, blue are for UKMO-DePreSys-PPE, and yellow is for the two 16 

system average. The initialized and uninitialized versions of each model are distinguished 17 

by different coloring. The sample correlation estimate is shown by the circle, the bars 18 

show the two-sided 90% uncertainty of a correlation given an underlying correlation with 19 

the value shown by the corresponding circle. Asterisk on top of a bar shows correlations 20 

that are significantly different from a null hypothesis of an underlying correlation of zero 21 

at p=0.1, single-sided, with the effective degrees of freedom estimated as in Bretherton et 22 

al. (1999). 23 
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Figure 10: Impact of Argo on retrospective and future forecasts of hurricane frequency 1 

using GFDL-DecPre. Lagged-ensemble (Lead 1-5 & Lead 2-6) forecasts of five-year 2 

Atlantic hurricane frequency based on the standard GFDL-DecPre system (gray line), and 3 

from a perturbation experiment in which forecasts initialized 2004 and later do not 4 

include data from Argo floats in the initialization (dashed line); black line shows 5 

observed five-year counts. A change in the drift of the initialized forecasts after the 6 

introduction of Argo leads to an increase in the predicted number of hurricanes after 7 

2004. 8 

  9 



54 
 

 1 

 2 
 3 

Forecast 

system 

Underlying 

GCM 

Initialization 

Procedure 

Ensemble 

Type 

Initialization 

Date 

Treatment 

of 

Volcanoes 

GFDL-
CM2.1 
DecPre 

(Rosati et 
al. 2012; 

Yang et al. 
2012) 

GFDL-
CM2.1 

(Delworth 
et al. 
2006) 

Fully 
Coupled 

Ensemble 
Kalman 

Filter (Zhang 
et al. 2007), 
full variable 
assimilation 

Ten 
ensemble 
members 
from the 

EnKF 
assimilation 

1-January of 
each year 

1960-2011. 

Future 
volcanoes 
included 

in 
radiative 
forcing 

UKMO 
DepPreSys-
PPE (Smith 
et al. 2007; 
Smith et al. 

2010) 

HadCM3 
(Gordon et 
al. 2000) 

Atmospheric 
and oceanic 
conditions 
relaxed to 

observations. 
Ocean 

anomaly 
initialization. 
(Smith and 

Murphy 
2007) 

Nine 
ensemble 
member 

perturbed 
physics 

ensemble 
(PPE) 

1 November 
of each year 
1960-2005. 

Forcing 
from past 
volcanic 
forcing 

included 

Table 1: Summary of the two dynamical multi-year experimental forecast systems 4 
explored in this manuscript. 5 
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 1 

Figure 1: Retrospective and future forecasts of hurricane frequency. Upper panels show 2 
the retrospective forecasts for five-year running hurricane frequency, lower panels focus 3 
on the nine-year running forecasts. Left panels show the results from uninitialized 4 
experiments, while the right panels show the results for initialized experiments. Black 5 
line shows the observed five-year hurricane counts from the NOAA Hurricane Database 6 
(HURDAT; Jarvinen et al. 1984, MacAdie et al. 2009) that includes an adjustment for 7 
observing inhomogeneity prior to 1966 described in Vecchi and Knutson (2011). 8 
Retrospective forecasts are shown in: red line shows the forecasts from the GFDL-CM2.1 9 
system, blue line shows the UKMO-DePreSys-PPE system, and the yellow line shows the 10 
two-system ensemble-mean. 11 
  12 
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 1 

Figure 2: Correlation for retrospective multi-year forecasts of North Atlantic hurricane 2 
frequency, with 90% uncertainty estimates. Each cluster of bars shows the retrospective 3 
correlation of multi-year hurricane frequency forecasts for lead 2-6 years (left), lead 6-10 4 
years (middle) and lead 2-10 years (right). Gray symbol is the correlation of the 5 
persistence of the five-year average count preceding the initialization of the model. Red 6 
symbols are for the GFDL-DecPre system, blue are for UKMO-DePreSys-PPE, and 7 
yellow is for the two system average. The initialized and uninitialized versions of each 8 
model are distinguished by different coloring. The sample correlation estimate is shown 9 
by the circle, the bars show the two-sided 90% uncertainty of a correlation given an 10 
underlying correlation with the value shown by the corresponding circle. Asterisk on top 11 
of a bar shows correlations that are significantly different from a null hypothesis of an 12 
underlying correlation of zero at p=0.1, single-sided, with the effective degrees of 13 
freedom estimated as in Bretherton et al. (1999).  14 
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 1 
 2 
Figure 3: Mean Skill Score Squared (MSSS) of retrospective initialized multi-year 3 
hurricane frequency forecasts for various leads and models. Horizontal axis shows the 4 
MSSS against climatology, vertical axis shows the MSSS against the uninitialized 5 
forecasts; diagonal line indicates the one-to-one line. Left panel shows MSSS values for 6 
the five-year running-mean forecasts, right panel shows MSSS values for the nine-year 7 
running-mean forecasts. Circles show the values for the GFDL-DecPre system, squares 8 
for UKMO-DePreSys-PPE, and stars for the two-model ensemble mean. Different colors 9 
indicate different forecast leads. 10 
 11 

  12 
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 1 
Figure 4: Retrospective and future forecasts of the SST indices used for the hurricane 2 
emulator. Left panels show time-series of the five-year mean SST anomalies averaged 3 
over the global tropics (upper) and Atlantic hurricane main development region (lower), 4 
at lead 2-6. Black lines show observational estimates from HadISST.v1 (Rayner et al. 5 
2003; solid) and ERSST.v3b (Smith et al. 2008; dotted). Colored lines show initialized 6 
(dashed) and uninitialized (solid) experiments from GFDL-DecPre (reds) and UKMO-7 
DePreSys-PPE (blue). Right panels show the retrospective correlations of the forecasts at 8 
lead 2-6 against the HadISST.v1 SST product.  9 
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 1 

 2 

Figure 5: Retrospective forecasts exploring the source of the initialized vs. uninitialized 3 
components. Left panel takes Atlantic MDR SST from initialized experiments and 4 
tropical-mean SST from uninitialized experiments, right panel takes tropical-mean SST 5 
from initialized experiments and Atlantic MDR SST from uninitialized experiments. The 6 
skill comes from the improvement of tropical Atlantic SST in the initialized experiments. 7 
  8 
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 1 

Figure 6: Retrospective forecasts arranged by verification and initialization date. Top 2 
panels (a and b) show the retrospective forecasts of five-year running hurricane averages 3 
for various leads, arranged so that each point on the time axis corresponds to the midpoint 4 
of the five-year interval over which the average is computed (e.g., 1992 corresponds to 5 
the midpoint of the 1990-1994 average). Bottom panels (c and d) show the retrospective 6 
five-year forecasts for various leads arranged so that each point on the time axis 7 
corresponds to the date in which the model was initialized. Left panels are from the 8 
GFDL-CM2.1 forecasts, right panels are from the UKMO-DePreSys-PPE system. Dark 9 
line in the top panels shows the observed five-year running counts. 10 
  11 
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 1 
Figure 7: Empirical probability density function (PDF) estimates for the change in 2 
seasonal hurricane counts over the entire record and over the four years that preceded the 3 
1994-1995 climate shift. The quantity explored is the difference in hurricane counts 4 
averaged over the five years following a given year with the counts of that year (e.g., for 5 
1991 it is the difference of hurricane counts averaged 1992-1996 with those in 1991); 6 
PDFs are estimated through Gaussian convolution with an e-folding scale of 2.5 7 
hurricanes per year. Black lines are based on observations, blue lines on the forecasts 8 
with GFDL-DecPre, and red lines on the forecasts using UKMO-DePreSys; solid lines 9 
are computed over the 1961-2006 period, dashed lines over 1991-1994. PDFs of the 10 
models are based on the various ensemble members. The separation of the solid and 11 
dashed black lines is a reflection of the increase in storm counts that occurred in 1995. 12 
Notice that there is no tendency for forecasts initialized in the early-1990s to have 13 
indicate a tendency for frequency increase through the early years of the forecast: the 14 
forecast systems do not dynamically predict the occurrence of the 1994-1995 shift.  15 
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 1 

Figure 8: Retrospective forecasts of North Atlantic hurricane frequency after removing 2 
1994-1995 shift in the mean from forecasts and verification (see Section III.A). Left 3 
panel shows the initialized forecasts at lead 2-6, right panel shows the uninitialized 4 
experiments. Black line shows the observed counts, red line is from the GFDL-DecPre 5 
system, blue line is from UKMO-DePreSys-PPE and the yellow line is the two system 6 
average, all after removing the 1994-1995 shift in the mean. 7 
  8 
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 1 
 2 

Figure 9: Retrospective correlations of forecasts after removing 1994-1995 shift in the 3 
mean from forecasts and verification. Gray symbol is the correlation of the persistence of 4 
the five-year average count preceding the initialization of the model. Red symbols are for 5 
the GFDL-DecPre system, blue are for UKMO-DePreSys-PPE, and yellow is for the two 6 
system average. The initialized and uninitialized versions of each model are distinguished 7 
by different coloring. The sample correlation estimate is shown by the circle, the bars 8 
show the two-sided 90% uncertainty of a correlation given an underlying correlation with 9 
the value shown by the corresponding circle. Asterisk on top of a bar shows correlations 10 
that are significantly different from a null hypothesis of an underlying correlation of zero 11 
at p=0.1, single-sided, with the effective degrees of freedom estimated as in Bretherton et 12 
al. (1999). 13 
  14 
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 1 
Figure 10: Impact of Argo on retrospective and future forecasts of hurricane frequency 2 
using GFDL-DecPre. Lagged-ensemble (Lead 1-5 & Lead 2-6) forecasts of five-year 3 
Atlantic hurricane frequency based on the standard GFDL-DecPre system (gray line), and 4 
from a perturbation experiment in which forecasts initialized 2004 and later do not 5 
include data from Argo floats in the initialization (dashed line); black line shows 6 
observed five-year counts. A change in the drift of the initialized forecasts after the 7 
introduction of Argo leads to an increase in the predicted number of hurricanes after 8 
2004. 9 


